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ABSTRACT
The density matrix directed second order MCSCF algorithm is reviewed.
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The density matrix directed (DMD) second
order MCSCF algorithm! (see also ref. 2-6) 1s based
on the fact that one can construct the Hessian and
the gradient of the energy expression from the
unique elements of one and two particle density
matrices. With the recent development of the Uni-
tary Group CI' method, »®? density matrix elements
can be obtained even for very large MCSCF Problems
without excessive computational effort. Alter-
natively, one can obtain these density matrix e1e~
ments by sorting a conventional CI formula tape,’
and this technique has proven to be quite practical
for traditional MCSCF problems.

The energy of a general MCSCF wavefunction
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can be expressed as follows
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and Sl?i'1 are structure factors. Variations in
eqn. (2) dre introduced by means of exponential uni-
tary transformations’? of the molecular orbitals
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where P, and 6

are row generators which de-

fine the non-redundant orbital and CI mixings at

first and second order respectively, (i.e.,

i



generates the non-zero elements of the 1th row of
8 and Q, generates the non-zero elements of the
i1th row 6f A?). The energy expression is then
expanded to second order in terms of the non-
redundant variables of the generators of the two
unitary transformations.

The contributions to gradient and Hessian can_
be obtained quite simply in terms of the P and Q
row generators.
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The DMD-MCSCF algorithm is outlined in
Figure 1.

MCSCF ALGORITHM
1. CONFIGURATION GENERATION
2. C. I. FORMULA GENERATION
3. D. M. SORT OF THE C. I. FORMULAS
4. HESSIAN FORMULA GEMERATION

5. MCSCF ITERATIONS
a. ORTHOGONALIZATION OF THE ORBITALS
b. INTEGRAL TRANSFORMATION
¢. CONSTRUCTION AND DIAGONALIZATION OF THE HAMILTONIAN

d. CONSTRUCTION QF THE HESSIAN AND THE GRADIENT, FOLLOWED
BY THE SOLUTION OF THE LINEAR EQUATIONS

e. APPROXIMATE UNITARY TRANSFORMATION OF THE ORBITALS

Figure 1.

As noted by Siegbahn, Heilberg, Roos, & Levy® (see

ref. 2), the density matrix elements which involve

only core orbitals need not be treated separately ¢
and various two electron density matrix elements

in which two of the indices refer to core orbitals

may also be grouped together. The Fock operator \‘/
expressions employed by Siegbahn, et al. in the

construction of the gradient may also be used to

advantage in the construction of the Cl-orbital

portion of the Hessian. Furthermore, the density

matrix elements whose indices refer only to core

orbitals do not contribute to the CI-orbital por-

tion of the Hessian.



Finally we note several advantages obtained
by employing the eigenvectors of the Hamiltonian in
this technique. First one need not include all of
the CI vectors in the expansion of the energy to
obtain a variational algorithm. This, of course,
allows one to address much larger MCSCF problems.
Second, the CI-CI portion of the Hessian and the
CI terms in the gradient are diagonal and zero re-
spectively. This allows the equations for the
elements of the unitary generators to be simpli-~
fied. Finally, redundant variables are not always
easily identified in large MCSCF calculations.
However, when the root of the Hamiltonian which is
being optimized is an eigenvector of the Hamiltoni-
an, redundant variables generally give rise to
zeros in the gradient and can be easily detected.

There are perhaps two points of primary
interest in evaluating the convergence properties
of this alogrithm. The first point being the be-
havior of this procedure when poor starting orbi-
tals are employed. The second point is concerned
with the number of CI vectors which must be inclu~
ded in large problems to obtain a reasonable rate
of convergence.

In a large number of MCSCF problems one does
not possess a very good choice of starting orbi-
tals. This is especially true if the MCSCF wave-~
function contains several configurations which
differ from one another by (spin orbital) single
excitations. In this case the Hessian may posses
very small and even negative eigenvalues. Various
means have been proposed to shift the eigenvalues
(or alternatively the diagonal elements)!® of the
Hessian or to take a step in the direction indica-
ted by the eigenvector which corresgonds to the
negative eigenvalue of the Hessian. These tech-
niques often yield disappointing results especial-
ly when applied to problems where the MCSCF
reference contains CSF's which differ by a single
excitation.! Instead, a super CI technique has
been found to possess a much larger radius of con-
vergence1 as demonstrated in Table I. In this
method one constructs an augmented Pessian matrix
1,180% 40 analogy with the Singles Hamiltonian

SUPER - C. 1. APPROACH

Figure 2.

constructed in Generalized Brillouin Theorem algo-
rithms. It is important to note that a density
matrix oriented approach allows this matrix to be
constructed in a much more efficient manner than
the traditional contraction type procedures.

This method 1is ?articularly attractive as quadra-
tic convergence' is very often obtained (when all

CI coupling terms are included) in this procedure
when a reasonable set of orbitals has been obtained.
Moreover, a simple scheme can be devised to correct
the eigenvector of this matrix, when it is not
dominated by the MCSCF reference and further in-
crease the radius of convergence attained by this
technique.

In the following tables the results of several
MCSCF calculations are presented in which the num-
ber CI vectors included in the Hessian has been
varied.

TABLE I. Be02'® 3 CSF SUPER CI ALGORITHM
Iteration  Energy (a.u.) AE A

14 -89.424317 - 2.56 E-1

2 -89.466285 4.20 E-2 2.29 E-1

3 ~89.-495331 2.90 E-2 1.13 E-1

4 -89.503767 8.44 E-3 6.62 E-2

5 -89.505765 2.00 E-3 1.53 E-2

6 ~-89.506026 2.60 E-4 5.07 E-4

7 -89.506033 7.99 E-6 6.57 E-7

8 -89.506034 1.13 E-8 1.42 E-12

a)
b)

core 4o2m", core 4050m* and core 4olnim

Bauschlicher~Yarkony Basis, J. Chem. Phys. 72,
1138 (1980)

C)A = ZA; , see eqn. (4)

3

d)Damping performed, the Hessian possessed two ne-
gative eigenvalues. SCF starting guess employed.

TABLE II. APPROXIMATE SUPER CI?

Iteration Energy (a.u) AE A

1 -89.424317 - .162

2 -89.462099 3.78 E-2 .137

3 -89.487145 2.50 E-2  8.36 E-2
4 -89.497525 1.04 E-2 2.93 E-2
5 -89.501648 4.12 E-3 1.40 E-2
6 -89.503637 1.99 E-3 8.40 E-3
7 -89.504713 1.08 E-3 5.00 E-3
8 -89.505311 5.98 E-4 2.82 E-3
9 -89.505642 3.31 BE-4 1.54 E-3
10 -89.505824 1.82 E-4 8.19 E-4

a)’I'he second order CI terms were not included in
this calculation.

The importance of including or excluding a
particular CI vector can be placed on a more quan-
titative basis by means of the simple perturbation
arguments presented below.

Consider the Newton-Raphson linear equations
induced by a two CSF, two orbital problem,

€ 6-C) @



vhere B, C and A represent the orb.-orb., CI-orb.,
and CI-CI portions of the Hessian respectively. A
and Y are the unique elements of thke generators
of the unitary transformations and g 1s the orbi-
tal gradient (the CI gradient is zero by virture of
the fact that the secular is assumed to have been
solved on the preceding iteration). We then have,z
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(Recall A a E? - E!' where 1 1s the root being

optimized.) This perturbation may be generalized
to account for the interaction between a par-
ticular CI vector and all of the orbital mixings.
For the purposes of this study it suffices to
consider these interactions a sum of decoupled two
by two problems and monitor the largest perturba-
tion term (C2/AB) associated with the last CI
vector t6 be included in the problem. These terms
are also presented in Tables III and IV. It is
interesting to note that this perturbation term
differs from the second-order perturbation expres-
sion obtained by Das? in that the energy differ-
ence appearing in the denominator is weighted a
diagonal element from the orbital section of the
Hessian.

The results of a number of MCSCF calculations
are summarized in the following tables.

TABLE IIIa. 3 CSF BeO CALCULATION WITH ONE CI
ROOT EXCLUDED

E AE A
1 -89.424317 - 2.61 E-12
2 -89.465898 4,16 E-3 2.28 E-1
3 -89.494027 2.81 E-2 1.03 E-1
4 -89.502397 8.37 E-3 2.82 E-2
S -89.504267 1.87 E-3 8.63 E-3
6 -89.505109 8.41 E~4 3.71 E-3
7  -89.505550 4.41 E-4 1.86 E-3
8  -89.505782 2,32 E-4 9.58 E~4
9  -89.505903 1.21 E~4 4.92 E-4
10  -89.505967 6.3 E-5 2.51 E-4
a)

Damping employed this iteration

TABLE IIIb. BeO 3 CSF MCSCF
Largest Sum of
Root Perturbation Perturbation
Term Contributions
1 .18 .72
2 .31 1.48
TABLE IV. FULL VALENCE ‘I STATE
oF Mgo®P
Number of 0 30 90
CI Roots
Itera-
tion. AE A AE A AR A
1 - 9.E-5 - 1.E-4 - 2.E-4
2 -3.E-6 6.E-6 -4.E-6 1.E-5 -5.E-6 3.E-6
3 -9.E-7 2.E-6 -~5.E-7 2.E-6 -8.E-7 1.E-7
Final = _574.514267  -274.514268 -274.514268
Energy

a)Yoshimine—HcLean molecular DZP Slater basis with
a diffuse 3s-function (.855) on Mg. 142 CSF's in

c2v

b)'I‘he maximum perturbation term (.43 ) was obtained
from the 22 eigenvector of the Hamiltonian.

The perturbation contributions of the higher
eigenvectors of the Hamliltonian are often larger
than the perturbation estimate of the contribution
of many of the lower roots of the Hamiltonian.
While the inclusion of a few of the CI vectors in
the varitional problem can dramatically affect the
convergence characteristic of this MCSCF algorithm
far from convergence. One can not expect any sub-
stantial advantage from this procedure near con-
vergence for a general (containing single excita-
tions) MCSCF wavefunction.

The: DMD-MCSCF algorithm provides a simple and
efficient means for constructing the Hessian and
the gradient of a general MCSCF energy expression.
The studies regorted in the paper and recent work
on Mg0 and Be0®? indicates that this method is
capable of providing the convergence behavior
needed to perform practical quantum chemical cal-
culations.
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